A rare case of not-so-benign factor XII deficiency

Adeel Arshad^{1*}, Nazia Mohamed¹, Absia Jabbar², Makiko
¹² Ran basfan³

¹² Ban–hoefen³

European Journal of 1 **Medical Case Reports** 2 Volume 3(1):01-04 3 © EJMCR. https://www.ejmcr.com/ 4 Reprints and permissions: 5 https://www.discoverpublish.com/ 6 7 https://doi.org/10.24911/ejmcr/ 173-1532134733 8 Discover

ABSTRACT

13

14

15

Background: Factor XII is an important part of the coagulation cascade. Its deficiency is benign but has been rarely associated with myocardial infarction and venous thrombosis.

16 Case Presentation: We present a case of a young lady who presented with a pulmonary embolism after supraventricular 17 arrhythmia ablation. She was later found out to have factor XII deficiency. Her treatment course with rivaroxaban was 18 uncomplicated and she stayed well afterward.

19 Conclusion: This report adds to the growing evidence of possible not-so-benign nature of factor XII deficiency.

20 Keywords: Factor XII deficiency, pulmonary embolism, cardiac ablation, coagulation, thrombosis.

 21
 Received: 21 July 2018
 Accepted: 4 November 2018

22 Type of Article: CASE REPORT

23 Funding: None

24 Declaration of conflicting interests: None

25 Background:

Factor XII deficiency is a rare, autosomal recessive dis-26 order with an estimated incidence of one in a million [1]. 27 Described mostly in the Asian population, this condi-28 29 tion is usually benign and asymptomatic. Interestingly, it causes prolongation of clotting in vitro without increasing 30 the risk of significant clinical bleeding [1]. In fact, para-31 doxically, there have been some reports of factor XII defi-32 ciency being associated with thrombotic complications, 33 including venous thromboembolism and myocardial 34 infarction (MI) [2]. We hereby present an unusual case of 35 a young lady who was found to have factor XII deficiency 36 after suffering a pulmonary embolism (PE) immediately 37 following a cardiac ablation. 38

39 Case Presentation

40 Patient information

A 21-year-old woman, without any significant past medical history, who swims competitively at her university,
underwent cardiac ablation for paroxysmal supraventricular tachycardia which she was having for the past 3 years.
A week after the procedure, she presented with symptoms
of acute onset chest pain that radiated to her back and also
shortness of breath.

48 Physical exam

Her vital signs at presentation were as follows: BP
114/63, pulse 98/minute, temperature 36.6°C, respiratory
rate 20/minute. Her breath and heart sounds were normal.
There was no murmur or loud P2 sound. Abdomen was

soft and non-tender. There was no calf swelling or tenderness. She was awake, alert, and oriented without any neurological deficit. 55

56

*Department of Internal Medicine, Unity Hospital–Rochester Regional

Full list of author information is available at the end of the article.

Diagnostics

Health. Rochester. NY.

Correspondence Author: Adeel Arshad

Email: adeel.arshad@rochesterregional.org

She was found to have a segmental PE on Computerized 57 tomography pulmonary angiography (CTPA, Figure 1). At 58 the time, she was taking estrogen-based oral contracep-59 tives which were stopped after the diagnosis of the PE. 60 Ultrasound Doppler of the veins of the lower limbs did 61 not reveal any thrombus. She did not have any risk fac-62 tor for a hypercoagulable state, except for the use of oral 63 contraceptive pills. She has no family history of repeated 64 miscarriages nor venous thromboembolism. The catheter 65 ablation was otherwise uncomplicated and she was nei-66 ther immobilized nor bed-ridden afterward. A subsequent 67 hypercoagulability workup, including protein C, protein 68 S, anti-thrombin III, lupus anticoagulant, and anticardi-69 olipin [(Immunoglobulin M (IgM) and Immunoglobulin 70 G (IgG)], was all negative. However, her activated par-71 tial thromboplastin time (aPTT) was very high (184.2 72 seconds), while the prothrombin time and international 73 normalized ratio (INR) were normal. Mixing study nor-74 malized the aPTT suggesting a factor deficiency. The 75 clotting factor assay revealed a severe deficiency of factor 76 XII (<1%), while factor VIII, IX, and XI activities were 77 normal. High molecular weight kininogen (HMWK) and 78 prekallikrein factor activity were tested and were 125% 79 and 127%, respectively (Table 1). 80

81 **Table 1.** Pertinent labs.

LAB	PATIENT'S VALUE	NORMAL VALUE
Prothrombin time	12.0	1.02–12.9 seconds
INR	1.0	0.9–1.1
aPTT	184.2	25.1-36.5 seconds
Factor VIII assay	132	68%–156% activity 92%–161% activity 70%–150% activity
Factor IX assay	92	
Factor XI	148	
Factor XII assay	<1	57%-165% activity
Mixing study	aPTT corrected	N/A
HMWK	125%	65%-135%
Prekallikrein	127%	55%-207%
Protein C	98	77%–147%
Protein S	140	51%-140%
Antithrombin III	127	81%-125%
Lupus anticoagulant	NEG	Negative
Anticardiolipin IgG	7	0-14 GPL/ml
Anticardiolipin IgM	4	0-12 MPL/ml
Beta-2 glycoprotein IgG	0	0–20 SGU
Beta-2 glycoprotein IgM	1	0-20 SMU
Factor V Leiden	Normal	Normal
Prothrombin gene	Normal	Normal
LDH	188	120–246 U/I
WBC	5.4	4–10 × 10 3/ul
Hemoglobin	13.5	11.5–16.0 g/dl
Hematocrit	40	40%-52%
Platelets	270	140–400 × 10 3/ul
Sodium	740	136–145 mEq/l
Potassium	4.0	3.5–5.1 mEq/l
Chloride	103	99–109 mEq/l
Bicarbonate	27	20–31 mEq/l
BUN	11	9–23 mg/dl
Creatinine	0.73	0.5–1.10 mg/dl
Calcium	9.1	8.6-10.2 mg/dl
Total protein	7.5	6.4–8.3 g/dl
Albumin	5.0	3.5–5.2 g/dl
ALT	18	1–33 U/I
AST	22	14–34 U/I
Bilirubin (Total)	0.7	0.3–1.2 mg/dl
Alkaline phosphatase	59	53–141 U/I

HMWK, High molecular weight kallikrein; IgG, Immunoglobulin G; IgM, Immunoglobulin M; LDH, Lactate dehydrogenase; TSH, Thyroid stimulating hormone; WBC, White cell count; BUN, Blood urea nitrogen; ALT, Alanine transaminase; AST, Aspartate transaminase; GPL, IgG phospholipid units; MPL, IgM phospholipid units; SGU, Standard IgG units; SMU, Standard IgM units.

82 Assessment

- 83 Marked elevation of aPTT, correction of aPTT with mix-
- 84 ing studies, normal HMWK, and prekallikrein activity and
- 85 finally severely depressed activity of factor XII confirmed
- 86 the diagnosis of factor XII deficiency.

87 Interventions

- 88 She was started on Rivaroxaban for 3 months for treatment
- 89 of presumably provoked venous thromboembolism (VTE).

Follow-up and outcomes

Her symptoms rapidly resolved. She had a regular follow-91up with the hematologist. Repeat imaging confirmed res-92olution of the PE (on CTPA, Figure 1). She experienced93neither recurrence of thrombosis nor abnormal bleeding94despite using anticoagulants.95

Discussion

Factor XII is essential for clotting *in–vivo* but patients who 97 are deficient in this glycoprotein are usually asymptomatic. 98

15

90

96 07

Figure 1. CTPA showing PE of the right lower lobe vessel (left side) with resolution in subsequent CT after treatment (right side).

Its deficiency arises from a mutation in the TaqI polymor-99 100 phic site within the gene on chromosome 5. Factor XII deficiency does not appear to cause a bleeding diathesis 101 102 nor does it protect against VTE [3]. In fact, there have been reports linking factor XII deficiency with recurrent 103 miscarriages and hypercoagulability [4]. John Hageman, 104 the first patient ever in whom this trait was discovered 105 died of PE after 12 days of sustaining a pelvic fracture 106 [5]. Halbmayer et al. [6] found a significant association 107 of factor XII deficiency with the development of recur-108 rent arterial thromboembolism (p < 0.003) as compared 109 with healthy subjects. A recent observational study (2016) 110 found the same association [7]. In contrast, a Swiss study 111 in 1999 that followed patients for 6 years concluded that 112 partial (Factor XII 1%-59%) and probably severe (Factor 113 XII <1%) factor XII deficiency does not confer hyperco-114 agulability [8]. Another study following 79 patients (21 115 homozygotes, 58 heterozygotes) for the development of 116 arterial thrombosis and MI did not find any increased risk 117 of thrombosis in such patients [9]. Whether or not fac-118 tor XII deficiency was the sole etiology for this particular 119 patient's venous thromboembolic complication is debat-120 121 able but is concerning enough to warrant future prophylactic postoperative anticoagulation, especially if the 122 bleeding risk is minimal with the use of anticoagulation. 123

124 Conclusion

We conclude that in the presence of another risk factor 125 for VTE, such as surgery or immobilization, factor XII 126 deficient patients can possess a higher risk of VTE than 127 the normal population. Given the extreme rarity of this 128 condition, we do not advocate for routinely screening for 129 factor XII deficiency from a cost-effectiveness standpoint. 130 131 However, in patients who are found to have a markedly prolonged PTT in the setting of a clotting complication, 132 assessing for factor XII deficiency may be warranted, as 133 these patients may benefit from prophylactic anticoagula-134 tion for future exposure to an increased hypercoagulable 135 state. 136

Acknowledgment

None		138	
List of	Abbreviations	139	
CTPA	CT pulmonary angiogram		
HMWK	High molecular weight kininogen		
lgG	Immunoglobulin G		
lgM	Immunoglobulin M		
INR	International normalized ratio		
MI	Myocardial infarction		
PE	Pulmonary embolism	146	
PTT	Partial thromboplastin time	147	
Consei	nt for publication	148	
Verbal	consent was taken.	149	
Ethical	approval	150	
Not required.		151	
A	- details	1.50	
	r details Archadl Nacia Mahamadl Ahaia Jahhaw ² Malilus	152	
Ban-ho	Arshad ¹ , Nazia Mohamed ¹ , Absia Jabbar ² , Makiko efen ³	153 154	
1. Depa	rtment of Internal Medicine, Unity Hospital–Rochester	155	
Regio	onal Health, Rochester, NY	156	
2. Depa	rtment of Pathology, University of Colorado, Denver, CO	157	
3. Depa	rtment of Hematology and Oncology, University of	158	
Roch	ester, Rochester, NY	159	
Refere	nces	160	
1. Re	enne T, Schmaier AH, Nickel KF, Blomback M, Maas C.	161	
	vivo roles of factor XII. Blood 2012; 120(22):4296–303;	162	
ht	tps://doi.org/10.1182/blood-2012-07-292094	163	
2. G	oodnough LT, Saito H, Ratnoff OD. Thrombosis or myo-	164	
са	rdial infarction in congenital clotting factor abnor-	165	
m	alities and chronic thrombocytopenias: a report of 21	166	
ра	tients and a review of 50 previously reported cases.	167	
	edicine (Baltimore) 1983; 62(4):248–55; https://doi.	168	
	g/10.1097/00005792-198307000-00004	169	
3. Ke	ey NS. Epidemiologic and clinical data linking factors XI	170	
ar	nd XII to thrombosis. Hematol Am Soc Hematol Educ	171	
	ogram 2014; (1):66–70; https://doi.org/10.1182/	172	
	heducation-2014.1.66	173	
	endrinos S, Deliveliotou A, Anastasiou A, Creatsas GK.	174	
	ole of coagulation factor XII in unexplained recurrent	175	
at	portions in the Greek population. J Reprod Med 2014:	176	

137

177

59(1-2):56-62.

- 178
 5.
 Ratnoff OD, Busse RJJ, Sheon RP. The demise of John

 179
 Hageman. N Engl J Med 1968; 279(14):760–61; https://

 180
 doi.org/10.1056/nejm196810032791407
- Halbmayer WM, Mannhalter C, Feichtinger C, Rubi K,
 Fischer M. The prevalence of factor XII deficiency in
 103 orally anticoagulated outpatients suffering from
 recurrent venous and/or arterial thromboembolism.
 Thromb Haemost 1992; 68(3):285–90; https://doi.
 org/10.1055/s–0038–1656366
- Girolami A, Cosi E, Santarossa C, Ferrari S, Lombardi AM.
 Thrombotic events in asymptomatic FXII deficiency versus symptomatic FXI deficiency: surprising observations.

Acta Haematol 2016; 136(2):118–22; https://doi. 190 org/10.1159/000445854 191

- Zeerleder S, Schloesser M, Redondo M, Wuillemin WA, 192 Engel W, Furlan M, et al. Reevaluation of the incidence 193 of thromboembolic complications in congenital factor XII 194 deficiency—a study on 73 subjects from 14 Swiss families. Thromb Haemost 1999; 82(4):1240–6; https://doi. 196 org/10.1055/s-0037–1614368 197
- 9. Girolami A, Morello M, Girolami B, Lombardi AM, Bertolo 198
 C. Myocardial infarction and arterial thrombosis in severe 199
 (homozygous) FXII deficiency: no apparent causative 200
 relation. Clin Appl Thromb Hemost 2005; 11(1):49–53; 201
 https://doi.org/10.1177/107602960501100105 202

203 Summary of the case

200			
204	Patient (gender, age)	1	21, F
205	Final diagnosis	2	Pulmonary embolism, factor XII deficiency
206	Symptoms	3	Chest pain and dyspnea
207	Medications	4	Rivaroxaban
208	Clinical Procedure	5	N/A
209	Specialty	6	Hematology